
Parallel Histogram Sorting in MPI 
Abhishek Pasari#1, Pentyala Srinivasa Rao#2 

#Department of Applied Mathematics, 

Indian School of Mines,  

Dhanbad, India 

Abstract— Sorting is one of the most common and most im-
portant problems in the field of computer science. Parallel 
sorting has become very necessary in order to reduce the com-
putation time for HPC applications which uses parallel sorting 
in each iteration. In this paper we present an approach to min-
imize the time required for sorting by distributing the array to 
a set of processors using MPI and output a global sorted ar-
ray. We implement parallel histogram sort in MPI and then 
compare our performance with the NASA NAS benchmarks. 
In other words, we present a novel parallel sorting algorithm 
which is scalable, portable and optimal based on the type of 
counting based sort. 

Keywords— parallel histogram sort, parallel, HPC, MPI, 
OpenMPI, C++, sorting, parallel sorting, counting based sort. 

I. INTRODUCTION 

Parallel sorting techniques despite being studied in large 
amount of literature, have not been sufficiently tested, op-
timized and scaled for high performance applications. With 
the change in hardware for high performance computing 
there is an inherent need for good scalable sorting algo-
rithms. Examples of HPC applications which use sorting at 
every iteration is ChaNGa[1]. 

We propose a sorting algorithm where we start with an 
unknown unsorted array with an assumption that upper and 
lower bounds are known including the size of the array. 

In this paper we describe a novel method of sorting in 
parallel. First we describe our serial implementation and 
then we proceed to describe the parallel implementation of 
histogram sort. In Section 2 we describe our serial algo-
rithm, with an parallel algorithm in Section 3. In Section 4 
tools which are required for our evaluation is described. 
Section 5 shows the various results based on our implemen-
tation. In the end Section 6 presents the conclusion with 
Section 7 describing the future work. 

II. SEQUENTIAL ALGORITHM

Here we first consider a unsorted array with two assump-
tions, firstly the lower bound of the keys inside an array and 
the upper bound of the range of keys inside an array is 
known. Secondly, the array must contain unsigned integers. 

The sequential algorithm works as follows: 

Input the unsorted array of size N_MAX 
Declare a histogram array of size MAX_KEY. 
Iterate over input array and add +1 to histogram array

 value. 
Construct sorted array through histogram generated. 

Output the reconstructed sorted array. 

In this above described algorithm we have taken 
MAX_KEY to be equal to the upper bound of the range of 
keys stored inside the unsorted array i.e. if  16 is the largest 
value in the range of number stored in an array then 
MAX_KEY is equal to 16. 

III. PARALLEL HISTOGRAM SORT

The figure described here gives a working flow chart of 
the parallel histogram sorting algorithm implemented in this 
paper.  

Fig. 1 Parallel histogram sort working diagram. 

Fig. 1 explains the working of the algorithm where size 
of the input unsorted array is N_MAX and the size of num-
ber of process in the program is P with MAX_KEY equal 
to the biggest element in the input array. The input array is 

Abhishek Pasari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 1008-1010

www.ijcsit.com 1008



 

 

filled with random numbers and it is distributed in a block 
distribution pattern to all process with each process receiv-
ing N_MAX/P part of the array. After distribution, a local 
histogram is generated for each process. Each process com-
putes is local histogram as shown in the figure where in-
put_local_array is the part of distributed array to each pro-
cess. array_index is the location of the array elements in 
both arrays. local_histo_array is the local histogram array 
for each process. The resulting local histogram are added 
together with MPI_REDUCE function to Process 0. Pro-
cess 0 after receiving the added local histogram broadcasts 
it to each process where they are able to generate the prefix 
sum array. After generation of prefix sum array each pro-
cess constructs its part of the array resulting into a globally 
sorted array. 

IV. EXPERIMENTAL SETUP 

A. OpenMPI 

 It is one of the most widely used and efficient model in 
parallel programming. In message passing approach a group 
of processes executes programs written in a programming 
language like C or C++ with calls of functions for sending 
and receiving messages. Open MPI is able to combine the 
expertise, technologies, and resources across the High Per-
formance Computing community in order to build the best 
MPI library available.  

B. NAS Benchmarks 

The NAS Parallel Benchmarks[2] are a set of bench-
marks designed to measure the performance of supercom-
puters. As there were only few benchmarks available 
NASA Advanced Supercomputing(NAS) Division in 1991 
developed the benchmark in order to measure the perfor-
mance of supercomputer. The benchmarks were extended 
and translated into different languages with currently the 
overall capacity of 11 different benchmarks. Out of them 8 
were from the first version of the benchmarks. The bench-
marks originally were written in Fortan and C as both the 
programming languages support OpenMP and MPI. 

1.Integer Sort Benchmark:  The IS (Integer Sort) NAS 
Parallel Benchmark using one of the class C which has 
over 227 elements in its array measures the time needed for 
sorting using a histogram. The histogram sorting method is 
similar to the bucket sort algorithm with bucket size 1. In 
bucket sort algorithm it sorts the elements into each bucket 
according to their size and then sorts the elements in each 
bucket. Here in this benchmark we simply create a histo-
gram array that counts the we simply create a histogram 
array that counts how often each number occurs in the key 
array. The histogram can then be used to print a sorted 
version of the key array. In other words, if the number 0 
occurred 6 times according to the histogram, we simply 
write six zeros to the sorted array and then continue with 
the next number. In this benchmark the elements of the 
histogram arrays are added up to the right which is also 
called accumulated histogram. The accumulated histogram 
provides the same information as the regular histogram.  

We compare our results implemented in MPI using 
OpenMPI with that of NAS benchmarks. 

V. RESULTS 

 

Fig. 
2 

Scal-
ing 
of 

Par-
allel 
histo
to-

gram 
sort 

As you can see in the graph of Fig. 2 which shows how 
the behavior of a particular array size w.r.t time as the 
number of process increases the time taken by a particular 
array size decreases. The bumps shown in the figure is the 
cache effect by the hardware. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Comparison of Parallel Histogram Sort with NAS benchmarks Inte-
ger Sort.  

Here we can see the comparison between the parallel his-
togram MPI implementation vs Nasa Benchmark(NB) over 
the array size of 9 Million and 135 Million. we can see hat 
our implementation performs better than the NASA imple-
mentation under the process(units) size ranging from 4 to 
16.  

VI. CONCLUSIONS 

The histogram sort has been successfully implemented in 
parallel using MPI in C++. We have been able to reduce the 
computation time drastically as shown in the above two 
graphs. Our algorithm still performs better when compared 
to NASA NAS benchmarks. Different array size can be 
sorted through our implementation if the maximum values 
to be sorted is known to the user with the values being inte-
ger. 

 

VII. FUTURE WORK 

Abhishek Pasari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 1008-1010

www.ijcsit.com 1009



 

 

In future this algorithm could be extended on a hybrid 
mechanism such as MPI+CUDA or OpenMP+ CUDA 
where we may see good scaling of our algorithm. 

ACKNOWLEDGMENT 

We would like to thank my guide Dr. P.S. Rao for his 
support as my guide and mentor throughout the work of this 
paper. Also, we would like to thank the Department of Ap-
plied Mathematics for the support throughout the work. 

REFERENCES 
1. Jetley, P., Gioachin, F., Mendes, C., Kale, L. V., & Quinn, T. (2008, 

April). Massively parallel cosmological simulations with ChaNGa. 
In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE 
International Symposium on (pp. 1-12). IEEE. 

2. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, 
R.L., Dagum, L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., 
Schreiber, R.S. and Simon, H.D., 1991. The NAS parallel 
benchmarks. International Journal of High Performance Computing 
Applications, 5(3), pp.63-73. 

Abhishek Pasari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 1008-1010

www.ijcsit.com 1010




